Package: cheem 0.4.0.0

cheem: Interactively Explore Local Explanations with the Radial Tour

Given a non-linear model, calculate the local explanation. We purpose view the data space, explanation space, and model residuals as ensemble graphic interactive on a shiny application. After an observation of interest is identified, the normalized variable importance of the local explanation is used as a 1D projection basis. The support of the local explanation is then explored by changing the basis with the use of the radial tour <doi:10.32614/RJ-2020-027>; <doi:10.1080/10618600.1997.10474754>.

Authors:Nicholas Spyrison [aut, cre]

cheem_0.4.0.0.tar.gz
cheem_0.4.0.0.zip(r-4.5)cheem_0.4.0.0.zip(r-4.4)cheem_0.4.0.0.zip(r-4.3)
cheem_0.4.0.0.tgz(r-4.4-any)cheem_0.4.0.0.tgz(r-4.3-any)
cheem_0.4.0.0.tar.gz(r-4.5-noble)cheem_0.4.0.0.tar.gz(r-4.4-noble)
cheem_0.4.0.0.tgz(r-4.4-emscripten)cheem_0.4.0.0.tgz(r-4.3-emscripten)
cheem.pdf |cheem.html
cheem/json (API)
NEWS

# Install 'cheem' in R:
install.packages('cheem', repos = c('https://nspyrison.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/nspyrison/cheem/issues

Datasets:

On CRAN:

5.03 score 2 stars 54 scripts 215 downloads 18 exports 134 dependencies

Last updated 1 years agofrom:cb5aa6dc9f. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 04 2024
R-4.5-winOKNov 04 2024
R-4.5-linuxOKNov 04 2024
R-4.4-winOKNov 04 2024
R-4.4-macOKNov 04 2024
R-4.3-winOKNov 04 2024
R-4.3-macOKNov 04 2024

Exports:%>%as_logical_indexcheem_lscolor_scale_ofcontains_nonnumericglobal_viewis_discreteis_diverginglinear_tformlogistic_tformproblem_typeproto_basis1d_distributionradial_cheem_tourrnorm_fromrun_appsubset_cheemsug_basissug_manip_var

Dependencies:ADMMaskpassbase64encbitbit64bslibcachemclarabelclassclassIntcliclustercodetoolscolorspacecommonmarkconflictedcpp11crayoncrosstalkcurlCVXRdata.tableDBIdbscandigestdoParalleldplyrDTe1071ECOSolveRevaluatefansifarverfastclusterfastmapfontawesomeforeachfsgenericsgganimateggplot2gluegmpgtablehighrhmshtmltoolshtmlwidgetshttpuvhttrisobanditeratorsjquerylibjsonliteKernSmoothknitrlabdsvlabelinglaterlatticelazyevallifecyclelpSolvemagrittrmaotaiMASSMatrixmclustcompmemoisemgcvmimeminpack.lmmunsellnlmeopensslosqppillarpkgconfigplotlypracmaprettyunitsprogresspromisesproxypurrrR6RANNrappdirsrbibutilsRColorBrewerRcppRcppArmadilloRcppDERcppDistRcppEigenRdimtoolsRdpackrglrlangrmarkdownRmpfrRSpectraRtsnes2sassscalesscatterplot3dscssfshapesshinyshinycssloadersshinythemessourcetoolsspinifexstringistringrsystibbletidyrtidyselecttinytextourrtransformrtweenrunitsutf8vctrsviridisLitewithrwkxfunxtableyaml

Getting started with cheem

Rendered fromgetting-started-with-cheem.Rmdusingknitr::rmarkdownon Nov 04 2024.

Last update: 2023-11-08
Started: 2022-01-18

Readme and manuals

Help Manual

Help pageTopics
Ames random forest model predictions and shap valuesames_rf_pred ames_rf_shap
Ames housing data 2018amesHousing2018 amesHousing2018_NorthAmes amesHousing2018_raw
Assure a full length logical indexas_logical_index
Preprocessing for use in shiny appcheem_ls
Chocolates datasetchocolates
Chocolate svm model predictions and shap valueschocolates_svm_pred chocolates_svm_shap
Suggest a color and fill scale.color_scale_of colour_scale_of
Check if a vector contains non-numeric charactercontains_nonnumeric
Development messagedevMessage
Linked 'plotly' display, global view of data and attribution space.global_view
Create the plot data.frame for the global linked plotly display.global_view_df_1layer
The legwork behind the scenes for the global viewglobal_view_legwork
Evaluate if developmentifDev
Check if a vector is discreteis_discrete
Check if a vector diverges a valueis_diverging
Linear function to help set alpha opacitylinear_tform
Logistic function to help set alpha opacitylogistic_tform
Extract higher level model performance statisticsmodel_performance
Penguins xgb model predictions and shap valuespenguin_xgb_pred penguin_xgb_shap
The type of model for a given Y variableproblem_type
Adds the distribution of the row local attributions to a ggtourproto_basis1d_distribution
Cheem tour; 1D manual tour on the selected attributionradial_cheem_tour
Draw new samples from the supplied data given its mean and covariances.rnorm_from
Runs a shiny app demonstrating manual toursrun_app
Subset a cheem listsubset_cheem
Suggest a 1D Basissug_basis
Suggest a manipulation variablesug_manip_var